Received: June 14, 1983; accepted: January 12, 1984

SYNTHÈSE DE FLUORO-2 MONOALKYLHYDRAZINES

A. BAKLOUTI et A. HEDHLI

Laboratoire de Chimie Structurale Organique Faculté des Sciences de Tunis (Tunisie)

SUMMARY

Substitution reactions of the tosyl group in 2-fluorotosylates seem to be easier than in homologous non-fluorinated tosylates [1,2]. Accordingly, the reaction of NH₂-NH₂ on these 2-fluorotosylates was investigated, and hitherto unknown 2-fluoromonoalkylhydrazines were obtained in acceptable yields.

RESUME

Les propriétés des fluoro-2 tosylates et en particulier la substitution du groupement tosyle, plus facile que pour les homologues non fluorés (1,2), nous a incité à essayer l'action de l'hydrazine en milieu aqueux. La réaction de substitution a lieu avec des rendements acceptables permettant ainsi la préparation de fluoro-2 monoalkylhydrazines inconnues.

SYNTHESE

Plusieurs modes d'accès aux monoalkylhydrazines sont connus [3-11], par contre les monofluoroalkylhydrazines sont très peu décrites [12-14].

Dans le présent travail nous avons choisi la voie de synthèse :

Le tosylate et l'hydrate d'hydrazine sont utilisés dans le rapport 1 : 10 afin d'éviter la polyalkylation de l'hydrazine.

0022-1139/84/\$3.00 © Elsevier Sequoia/Printed in The Netherlands

L'évolution de la réaction de substitution est contrôlée par infrarouge et se base sur l'apparition des bandes v_{N-H} à 3360 cm $^{-1}$ et δ_{N-H} vers 1610 cm $^{-1}$; et la disparition de la bande d'absorption v_{SO} vers 1200 cm $^{-1}$.

Le tableau I groupe les différents produits obtenus par cette méthode.

IDENTIFICATION

Elle repose sur les données I.R et R.M.N du proton et du fluor. Le tableau II groupe les données R.M.N relatives aux fluoro-2 alkylhydrazines. Les spectres R.M.N ^1H ont été réalisés sur un appareil JEOL-C-HL60 dans CDCl $_3$ + TMS, ceux du fluor ont été enregistrés sur un appareil BRUKER (84,6 MHz) dans CDCl $_3$ avec C_6F_6 comme référence interne. Les valeurs ϕ_F données dans le tableau II sont calculées par rapport au signal de CFCl $_3$ [15

La comparaison des valeurs données dans le tableau II avec celles des fluoro-2 tosylates, fluoro-2 chloro [16] et fluoro-2 éthers [2] homologues permet les commentaires suivants :

- Les protons portés par les carbones azotés résonnent à des champs plus forts que ceux portés par les carbones tosylés correspondants. Ceci peut être rattaché à la différence d'électronégativité des groupements -NH-NH₂ et -OTs. Par contre les protons portés par les carbones fluorés subissent un léger déplacement vers les champs faibles lorsuqu'on passe des fluoro-2 tosylates aux fluoro-2 alkylhydrazines,ceci est probablement lié à la possibilité d'existence de liaison hydrogène intramoléculaire entre le fluor et le groupement hydrazyle.
- A partir du fluoro-2 tosylcyclohexane trans, l'action de $\mathrm{NH_2}$ - $\mathrm{NH_2}$ donne un seul produit ; ceci nous permet d'admettre que le cours stérique de substitution du groupement tosyle par le groupement hydrazyle est le même que celui obtenu par action de KF [1] et correspond à une $\mathrm{SN_2}$. Le spectre R.M.N ¹⁹F de la fluoro-2 cyclohexylhydrazine cis enregistré à température ordinaire se présente sous la forme d'un massif large à 202.3 ppm.

Si nous nous référons aux valeurs du tableau III, en considérant que φ_F à température ordinaire est une valeur moyenne pondérée suivant les populations, des valeurs obtenues à basse température pour chacune des conformations chaises (l'une à fluor axial avec $\varphi_F^{\ \ \sim}$ 205 ppm et l'autre à fluor équatorial avec $\varphi_F^{\ \ \sim}$ 175 ppm), nous pouvons conclure que l'équilibre :

est nettement en faveur de la conformation à fluor axial.

TABLEAU I

PRODUITS OBTENUS PAR ACTION DE N₂H₄, H₂O SUR

LES FLUORO-2 TOSYLATES

N°	Fluoro-2 tosylate	Produit	Eb°C/mmHg	Rdt %
1	¢СНF-СН ₂ -ОТs	фСНF-CH ₂ -NH-NH ₂	72/0,1	52,6
2	CH ₃ -CHF-CHOTs-CH ₃	CH ₃ -CHF-CH-CH ₃ NH-NH ₂	46/15	64
3	CH ₃ -CH ₂ -CHOTs-CH ₂ F(66%) + CH ₃ -CH ₂ -CHF-CH ₂ OTs(34%)	CH ₃ -CH ₂ -CH-CH ₂ F(90,2%) NH-NH ₂ + CH ₃ -CH ₂ -CHF-CH ₂ -NH-NH ₂ (9,8%)	60/15	66
6	CH ₃ -CHF-CH ₂ -OTs(60%) + CH ₃ -CHOTs-CH ₂ F(40%)	CH ₃ -CHF-CH ₂ -NH-NH ₂ (57%) + CH ₃ -CH-CH ₂ F(43%) NH-NH ₂	53/35	50,5
7	OTs (E)	F (z)	38/0,3	39

TABLEAU II

DONNEES R.M.N RELATIVES AUX FLUORO-2 ALKYLHYDRAZINES

N°	Composé	Déplacement chimique en ppm						Constante de couplage en Hz	
	•	$^{\phi}_{ m F}$	a	ь	С	đ	е	2 _{JHF}	3 _{JHF}
1	C ₆ H ₅ -CHF-CH ₂ N ₂ H ₃ a b c d	183,6	7,25	5,60	2,83	3,88	-	48,8	21,7
2	$^{\mathrm{N}_{2}\mathrm{H}_{3}\mathrm{d}}_{\mathrm{CH}_{3}\mathrm{-CHF-CH-CH}_{3}}$	194,2	1,27	4,75	2,73	3,38	1,13	48,8	-
3	$^{\mathrm{N}_{2}\mathrm{H}_{3}\mathrm{d}}_{\mathrm{CH}_{3}\mathrm{-CH}_{2}\mathrm{-CH}\mathrm{-CH}_{2}\mathrm{F}}$ a e c b	230,8	0,88	4,28	2,78	3,59	1,45	47,3	20
4	CH ₃ -CH ₂ -CHF-CH ₂ -N ₂ H ₃ a e b c d	187,3	0,93	4,27	2,83	3,59	1,82	-	-
5	CH ₃ -CHF-CH ₂ -N ₂ H ₃	179,5	1,30	4,83	2,83	3,45	-	48,8	_
6	N ₂ H ₃ d CH ₃ -CH-CH ₂ F a c b	228	1,05	4,30	2,83	3,45	_	47,3	19
7	$\underbrace{e}_{a b} \underbrace{e}_{c}^{e} N_{2}^{H_{3}} d$	202,3	2,05	4,93	2,63	3,75	1,38	51	-

TABLEAU III

deplacement chimique $\varphi_{_{\mathbf{F}}}$ des fluorocyclohexane $\alpha\text{--substitues}$ cis

Х	Basse température		Température ordinaire	Feq	
	$^{\phi}_{\mathrm{F}}$ eq	^ф г ах	ф _Г	Fax	
C1	170	199	191	2,27	
F	179,4	206,2	192,8	1	
OMe	181,4	208,6	199,4	0,52	
NH-NH ₂	-	_	202,3	-	

PARTIE EXPERIMENTALE

homologue ***

Dans un ballon rodé de 50 ml, muni d'une agitation magnétique, d'un réfrigérant et d'une ampoule à brome, nous plaçons sous atmosphère d'azote et à 70°C 12,5 g (0,25 M) d'hydrate d'hydrazine, le fluoro-2 tosylate est alors additionné goutte à goutte pendant 3 heures. Le mélange réactionnel est maintenu à 70°C et sous une agitation magnétique vigoureuse pendant 24 heures. Après extraction à l'éther, la phase aqueuse est saturée avec NaCl et est extraite de nouveau à l'éther. Par distillation à pression réduite, nous récupérons la fluoro-2 alkylhydrazine

^{*} Lorsque le tosylate est solide, il est dissous dans un minimum d'éther.

^{**} Dans le cas du tosyl-2 fluorocylohexane le chauffage est maintenu à 90°C pendant 48 heures.

^{***} Toutes les fluoro-2 alkylhydrazines synthétisées sont nouvelles.

REFERENCES

- A.BAKLOUTI et R. EL GHARBI, J. Fluorine Chem., 13 (1979) 297.
- 2 A.BAKLOUTI et M.M. CHAABOUNI, J. Fluorine Chem., 18 (1981) 45.
- 3 R.D. BROWN et R.A. KEARLEY, J. Am. Chem. Soc., 72 (1950) 2762.
- 4 C.WESTPHAL, Chem.Ber., 74B (1941) 759 et 1365.
- 5 A. AULT, J. Chem. Educ., 42 (1965) 267.
- 6 D.G. HOLLAND et C. TAMBORSKI, J. Org. Chem., 31 (1966) 280.
- 7 P.R. STEYERMARK et J.L. McCLANAHAN, J. Org. Chem., 30 (1965) 935.
- 8 G.GEVER et K.HAYES, J.Org.Chem., 14 (1949) 813.
- 9 R.J.HEDRICH et R.T. MAJOR, J.Org.Chem., 29 (1964) 2486.
- 10 H.W. STEWART, Belgian Patent (1963), 630, 725.
- 11 F.E. CONDON et G.L. MAYERS, J.Org.Chem., 30 (1965) 3946.
- 12 H. BOHME et M.HILP, Chem.Ber., 103 (1970) 3930.
- 13 H.RAINER, O.MICHAEL, H. RUTH, H. MANFRED et K. HANS, Ger.Offen., (1978) 2, 726, 210.
- 14 F.L. ALLEN, R.E. JEWELL et H. SUSCHITZKY, J.Chem.Soc., <u>61</u> (1960) 5259.
- J.W.EMSLEY, J. FEENEY et L.H. SUTCLIFFE, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon (1966).
- 16 A. BAKLOUTI et J. JULIEN, Bull. Soc. Chim. Fr., (1968) 2929.